HUNGARY AS ONE OF THE EUROPEAN HUBS FOR AUTOMATED AND CONNCECTED DRIVING

zone

Prof. Dr. Laszlo Palkovics

## Content

## What is the challenge?

(Road) mobility as social need Opportunities and limitations of automatized vehicle driving

## Why Hungary?

Previous activities in the field of electronic vehicle control Status of academic and industrial research and development Support of the community – decision on large scale testing infrastructure

## What do we offer?

Unique vehicle testing facility for autonomous and electric vehicles Extended Central-European testing zone





What is the challenge?

# Mobility as social challenge

Inspirating factors for development

| 1     | Zoro Emission        | • Fuel-consumption reduction                                       |              |
|-------|----------------------|--------------------------------------------------------------------|--------------|
|       |                      | Reducing emission                                                  | <b>0</b>     |
|       |                      |                                                                    |              |
| ~     | Demographic pressure | Support of insecure leaders                                        |              |
| Ζ     |                      | • Increase the elderly mobility                                    |              |
|       |                      |                                                                    |              |
| 2     |                      | • Avoidance of the accidents by reducing the effect                |              |
| 3     | Risk of accidents    | of human mistakes                                                  |              |
|       |                      |                                                                    | A A A        |
| ^     | Increasing traffic   | Management of transport process                                    | Charles Star |
| 4     | density              | Comfortable, time-saving travel                                    |              |
|       |                      |                                                                    | Rea Car      |
| -     |                      | <ul> <li>Intelligent sensors for appropriate process</li> </ul>    |              |
| 5     | Assistance systems   | <ul> <li>Intelligent actuators (steering, brakes, etc.)</li> </ul> |              |
|       |                      |                                                                    | 89           |
| Sourc | e: VDA               |                                                                    |              |
|       |                      |                                                                    | •            |
|       |                      |                                                                    |              |
|       |                      |                                                                    |              |
|       | V                    | -                                                                  |              |

zone

## Mobility as social challenge Technology is available

### Longitudinal control



ACC traffic-jam assistant emergency braking assistant

#### Transverse control



Lane-changing assistant, lanekeeping assitant

#### Parking, maneuvering



Automated parking assistant

Lighting



Adaptive long-distance lighting, adaptive cornering ligths

### Drive supervision



### Environmental supervision



Source: VDA

zone



## Change in driver's responsibility Levels of automatization

|                                                               | The role and resp<br>driver change, leg                            | onsibility of the<br>al background                     |                                                                    |                                                                                                                          |  |  |  |
|---------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|
| The driver<br>controls the<br>vehicle, both<br>longitudinally | The driver<br>controls the<br>vehicle, either<br>longitudinally or | The driver<br>constantly<br>supervises the<br>systems. | The driver don't<br>have to constantly<br>supervise the<br>system. |                                                                                                                          |  |  |  |
| and transversely.                                             | transversely.                                                      |                                                        | The intelligent system fully                                       | The vehicle is<br>fully automated,<br>the driver does<br>not have to<br>supervise the<br>system.                         |  |  |  |
|                                                               |                                                                    | The intelligent<br>systems take the                    | takes control,<br>intervenes, even<br>in critical                  | not have to<br>supervise the<br>system.                                                                                  |  |  |  |
| No active                                                     | The intelligent<br>systems                                         | longitudinal and<br>transversal                        | situations. The<br>driver has<br>enough time to                    | r The vehicle is<br>fully automated,<br>the driver does<br>not have to<br>supervise the<br>system.<br>Fully<br>automated |  |  |  |
| intervening<br>system.                                        | other direction.                                                   | direction for a given time.                            | take control.                                                      |                                                                                                                          |  |  |  |
| Only driver                                                   | Driver<br>support                                                  | Partially automated                                    | Highly<br>automated                                                | Fully<br>automated                                                                                                       |  |  |  |
| Level of automatization                                       |                                                                    |                                                        |                                                                    |                                                                                                                          |  |  |  |

zone



Vehicle - driver

# Mobility as social challenge

Change in driver's responsibility



Source: Volvo, Knorr-Bremse





# Mobility as social challenge

## Non-technical questions

- Can we take away the enjoyment of driving from the driver?
- As different to the other co-operatively drivable vehicles (plane, boat, rail) we must be ready to manage the vehicles to handle the dangerous situations while having human participants with unperfect and very different abilities?
- What is the base of decision if we must choose from two bad options?
- Liability and legal concerns
- Will the drivers be mentally overloaded by the fact, that they do not control the vehicle?
- Can we guarantee, that autonomous vehicles will not be put in non-proper use?







## Number of test/use cases is unknown





Why Hungary?

## Long term competency in electronic vehicle control High-level research already in the 80's

### ESP with brake and steering intervention



## Long term competency in electronic vehicle control Participation in all relevant large scale EU FP projects



zone





# Long term competency in electronic vehicle control

Strong scientific community for autonomous vehicle technology research

## Close cooperation

- Industrial partners (BOSCH and Knorr-Bremse)
- Academical background (BME, ELTE, MTA SZTAKI)

## Market demand

- Global trends and actual developments in automotive
- 4 OEM's and 15 TIER1 companies from Hungary
- Constant need for qualified engineers

### Strong government support

- Higher added value compared to manufacturing
- ROI calculation at national economy level
- Special research funding programs

## Dedicated BSc/BEng and MSc courses

- Autonomous Vehicle Control Engineer MSc in English, 2018, Budapest, BME
- Computer Science for Autonomous Driving MSc in English 2018, Budapest, ELTE
- Vehicle Test Engineer Beng in Hungarian 2018, Zalaegerszeg







# Industrial background

## Close co-operation with the industry – specification of requirements

Automotive Working Group: Almotive, AVL, BME GJT, Bosch, Commsignia, Knorr-Bremse, Continental, EVOPRO, NKH, NI, SZTAKI, ThyssenKrupp Presta, TÜV Rheinland, ZF

- Detailed technical specification of the classic elements of vehicle dynamics and physical structure of the automated vehicle tests
- Draft specification of the autonomous environment and related communication infrastructure
- Technical proposal for autonomous vehicle public road testing

ICT Working Group: BME HIT, BME KJIT, BPC, Ericsson, HUAWEI, Kapsch, Magyar Közút, Magyar Telekom, NFM, NMHH, Nokia, Oracle, RWE, Siemens, SWARCO, T-Systems, Vodafone (compared to the new members of the automotive working group)

• Detailed specification of the autonomous vehicle environment and related communication infrastructure

A\MOTIVE AVL BOSCH tinental 3 commsignia KNORR-BREMSE thyssenkrupp TUVRheink



# Committment of the Hungarian Government

Investment into a European level RD infrastructure

- Capacity constraints in Europe in area of vehicle dynamic testing
- **Technology change** in vehicle industry single vehicle vs. co-operative vehicle control: different development environment is required
- Decision of Hungarian Government in 2016:

Vehicle Proving Ground as research infratructure to be created at Zalaegerszeg.







## Committment of the Hungarian Government

Investment into a European level RD infrastructure



What do we offer?

Designed on the demand of industrial companies

- Be able to address all test levels of development process, including the autmated and connected vehicle tests, including pass car, and commercial vehicles
- Handling of prototype vehicles must be conform with internationally accepted standards and the customer needs
- Full range service for customers should be provided on-site (fueling, electric charger, meal, office, workshop etc.)
- Flexible and connectable track modules for special events and tests
- The test modules should be visually separated, the development and the public areas should be fully separated
- Public road test opportunity for autonomous vehicles
- Representative, attractive environment for presentations and conferences





## Proving Ground System – Overview



### Project phase 1: 2017

Dynamic test elements I:

- Dynamic platform
- Braking surfaces
- Handling course
- Smart City Zone I Buildings I

Preparation of high-speed oval

### Project phase 2: 2018-2020

- Dynamic test elements II
- Smart City Zone II III
- Buildings II
- High-speed oval



## Buildings and functions



From computer to real traffic – essential for automated driving

| 5 | Intercity and motorway   |  |
|---|--------------------------|--|
| 4 | Real city<br>environment |  |
| 3 | Proving ground           |  |
| 2 | Laboratory               |  |
| 1 | Simulation               |  |

a 🚛 🔒

Real public road environment

Controlled public road tests

Controlled system-test

Component test, integration test

Conceptual and feasability test





From computer to real traffic – essential for automated driving `

| 5 | Intercity and motorway   |         | Real public road<br>environment  |
|---|--------------------------|---------|----------------------------------|
| 4 | Real city<br>environment |         | Controlled public road tests     |
| 3 | Proving ground           |         | Controlled system-test           |
| 2 | Laboratory               |         | Component test, integration test |
| 1 | Simulation               | BI - 19 | Conceptual and feasability test  |







Combined traditional and autonomous testing modules







## Combined traditional and autonomous testing modules







Example: High speed oval with automated drive functions\*



### Parameters:

- 4.400 m length
- 1.000 straight section
- Curve radius 350m
- max. 200km/h at curves
- max. 250km/h at straights
- 1% inclination to south
- 9 3+1 lanes
- V2X infrastructure for communication test at high speed

### AD vehicle test services:

- Platooning at high speed motorway situations
- Cooperative vehicle control at high speed
- Fix position and moving **obstacles** (dummy car or pedestrian)
- V2I, V2V communication tests at high vehicle speed

### What do we offer?

\* Other examples in the back-up



Example: Motorway with special features\*



#### Parameters:

- 1500m 2 x 2+1 lane motorway
- 100m real tunnel
- 100m artificial tunnel with different covers, camouflage, steel net
- Partly watered surface
- 5G test network
- V2X communication coverage
- GPS base station
- Public road like layout (junctions, road surface, geometry)

### AD vehicle test services:

- Platooning on motorway at realistic conditions, exits and entrances
- Platooning and cooperative control with limited communication (tunnel)
- Moving and static obstacle
- Special situations: road building situation
- Multi level junction



\* Other examples in the back-up



Automated and connected drive testing – special components

- Suitable for co-operative vehicle testing (e.g. platooning)
- Old cars for scenery, special cars
- Traffic gantry with variable message sign
- Railway crossing, construction zone, pedestrian crossings, trees, moveable road signs, tunnel, parking places, logistic yard, roadside objects, various street lights, SMART City features
- Highway road situations
- Rural road environment
- V2X communication system
- Environmental impact measurement opportunity (e.g. noise, EMC, rain, fog)
- Light measurement track
- High speed mobile network(LTE, 5G)
- Database about the environment
- External measurement infrastructure:





зe

## Multi-level testing environment Smart city environment – part of the test track















From computer to real traffic – essential for automated driving `

| 5 | Intercity and motorway   | Real public road<br>environment  |
|---|--------------------------|----------------------------------|
| 4 | Real city<br>environment | Controlled public road tests     |
| 3 | Proving ground           | Controlled system-test           |
| 2 | Laboratory               | Component test, integration test |
| 1 | Simulation               | Conceptual and feasability test  |







Zalaegerszeg will be turned into Smart/Digitalized City for testing



Out of the test track ...



... immediately to a real city environment



**Kiskutas** 

Nagypáli



City environment for real-life testing





From computer to real traffic – essential for automated driving `

| 5 | Intercity and motorway   |    | Real public road<br>environment  |
|---|--------------------------|----|----------------------------------|
| 4 | Real city<br>environment |    | Controlled public road tests     |
| 3 | Proving ground           |    | Controlled system-test           |
| 2 | Laboratory               |    | Component test, integration test |
| 1 | Simulation               | 61 | Conceptual and feasability test  |







## Extended testing zone – test field *to* city *to* public roads



- Loop\_2 Hungarian roads (Zalaegerszeg-Gyor-Budapest) Actually designed R76 for automated driving, M7 with modified communication
- Loop\_3 International roads (Graz-Zalaegerszeg-Maribor zone)





## Public road test Details



Services

#### Platooning



# Complete test programs



### Tracks and modules

O Dynamical testsO Automated vehicle use cases

### **Technical services**

- Engineering and IT support services
- o Electric charger and fuel station
- o Vehicle repairing services
- o Mechanical and electrical workshop
- o Accredited vehicle inspection station

### Other services

- o Authrity Office in place
- o Logistic partner (shuttle bus and prototype carrying)
- $\ensuremath{\circ}$  Visitor and Event Center
- $\ensuremath{\circ}$  Hotel and accomodation opportunity inside the zone



What do we offer?

Connected vehicle control



#### Special situations

zone



## Multi-level testing environment - Summary Unique selling propositions



- Autonomous & electric vehicle test environment fusion with classic dynamic elements
- Complete validation services
- Public road testing possibility of autonomous vehicles
- Attractive environment of City of Zalaegerszeg
- Complex services at the proving ground area, trainings and accomodation opportunities
- Education background in City of Zalaegerszeg (test engineer, autonomous vehicle control engineer)
- Opportunities for track development, free development area

### Several elements are available from 2018, complete finish in 2020.





## ZALAZONE - Region Zala





## Comparison of different test tracks world-wide - size



## Comparison of different test tracks world-wide - modules







#### Available

Partly / not full availability

Available but at low-level



## Comparison of different test tracks world-wide - services

|                                | ZONE | Aldenhoven | AstaZero | Boxberg | Horiba-Mira | Idiada | MCity | Milbrook | Nardo | Papenburg |
|--------------------------------|------|------------|----------|---------|-------------|--------|-------|----------|-------|-----------|
| Test track modules             |      |            |          |         |             |        |       |          |       |           |
| Workshops and offices          |      |            |          |         |             |        |       |          |       |           |
| Conference room                |      |            |          |         |             |        |       |          |       |           |
| Staff for workshops            |      |            |          |         |             |        |       |          |       |           |
| Measurement equipment          |      |            |          |         |             |        |       |          |       |           |
| Engineering capacity available |      |            |          |         |             |        |       |          |       |           |
| Laboratory                     |      |            |          |         |             |        |       |          |       |           |
| Use cases availability         |      |            |          |         |             |        |       |          |       |           |
| Hostel at proving ground area  |      |            |          |         |             |        |       |          |       |           |
| Training facility              |      |            |          |         |             |        |       |          |       |           |
| Vehicle transportation service |      |            |          |         |             |        |       |          |       |           |
| Plate for tests                |      |            |          |         |             |        |       |          |       |           |







## High-speed oval





#### Parameters :

- 4.400 m length
- 1.000 straight section
- Curve radius 350m
- max. 200km/h at curves
- max. 250km/h at straights
- 1% inclination to south
- 3+1 lanes
- V2X infrastructure for communication test at high speed

### AD vehicle test services:

- Platooning at high speed motorway situations
- Cooperative vehicle control at high speed
- Fix position and moving **obstacles** (dummy car or pedestrian)
- V2I, V2V communication tests at high vehicle speed





## Dynamic surface



#### **Parameters:**

- 300 m diameter
- Acceleration lane 700 m and 400m long
- FIA compatible emergency area (20m wide)
- Partly watered surface (optional)
- Watered basalt surface at Easter acceleration lane (phase 2.)
- 1% inclination to south
- Separated return way

### AD vehicle test services :

- Platooning at free trajectory
- **Cooperative vehicle control** at high and medium mue with different trajectories (double lane change, J-turn etc.) at stability limit (ABS, ESP activity)
- Fix position **obstacle** (dummy car or pedestrian)



#### Track modules



# Braking surfaces





- 6 different surfaces: Chess surface asphalt/tiles, asphalt mue = 1 (optional watering), tiles mue = 0.1 (wet), Blue basalt mue=~0.3 (wet), Treated concrete mue=~0.6 (wet), aquaplaning basin (max. 5cm wet depth)
- 200 m length
- 700m acceleration lane
- 20m safety area at both side 150m at the end
- Separated return way

#### AD vehicle test services :

- **Platooning** at physical limits; drive through or braking at various surfaces up to high speed
- Cooperative vehicle control at physical limit, moving or static obstacle, at ٠ various speeds during ABS, ATC, ESP activity



# Handling course



### Parameters:

- Low and high speed section
- ~1.300m and ~2000m length
- width: 6 and 12 m
- Radius low speed section 15..50m
- Radius high speed section: 40..100m
- Asphalt covered safety zones
- Variable inclinations
- Watering system
- Different alternative surfaces

### AD vehicle test services :

- Platooning at medium speeds at diverse topography
- Cooperative vehicle control at diverse topography and limited visibility





## Motorway



#### Parameters:

- 1500m 2 x 2+1 lane motorway
- 100m real tunnel
- 100m artificial tunnel with different covers, camouflage, steel net
- Partly watered surface
- 5G test network
- V2X communication coverage
- GPS base station
- Public road like layout (junctions, road surface, geometry)

### AD vehicle test services :

- Platooning on motorway at realistic conditions, exits and entrances
- Platooning and cooperative control with limited communication (tunnel)
- Moving and static obstacle
- Special situations: road building situation
- Multi level junction



#### Track modules



## Rural road





#### **Parameters:**

- 500m 2x2 lane motorway
- 2500m 2x1 lane rural road
- Partly watered surface
- 5G test network
- V2X kommunikation coverage
- GPS base station
- Public road like layout (junctions, road surface, geometry)

### AD vehicle test services :

- **Platooning** on rural road at realistic conditions, various type of junctions, roundabouts
- Diverse lane layout: 2x1, 2x2, 2+1
- Diverse topography
- Moving and static obstacles
- Special situations: road building situation
- Various road side elements: trees, fences, grass etc.





## Smart city zone





## • Various length 25..200 m

**Parameters:** 

- Various lanes (1, 2x1, 2x2, 2x3, 2x4)
- Lanes width 2.75 .. 3.5 m
- Inclination 10%, 20%, 4 m slope height
- Various street material (asphalt, concrete, basalt, ceramit, gravel)
- Street orientation N-S & E-W
- Speed limit 50 .. 80 km/h
- Various junction types, roundabouts
- Low friction surfaces for AD interaction test at adherence limit
- min. 8 building blocks
- Varying size max. 25x60m
- min. 200m long streets
- Parking house
- Different fascades: brick, concrete, steel, wood, etc.

46

zone



What do we offer?

## Smart city zone







### Technical description:

- Sticky lane markings
- Adjustable curbs
- Real test vehicles
- Old cars for scenery, special cars
- Traffic gantry with variable message sign
- Railway crossing, construction zone, pedestrian crossings, trees, moveable road signs, tunnel, parking places, logistic yard, roadside objects, various street lights, SMART City features
- Highway road situations
- Rural road environment

### Communication network:

- V2X communication system
- Environmental impact measurement opportunity (e.g. noise, EMC, rain, fog)
- Light measurement track
- High speed mobile network(LTE, 5G)
- Database about the environment
- External measurement infrastructure



# Smart city zone

### AD vehicle test services :

- Low-speed **platooning** at various junctions and lane layout
- Emergency braking in city environment with different barriers (static, moving) on high and low friction surface
- **Crossings** with low to medium friction surfaces for interactions with optional vehicle number with ABS, ATC, ESP activity
- Cooperative tests with vehicles, pedestrians, bikers etc.
- Different **parking situations**: parking house, valet parking, park assistant, different layouts, smart parking
- Intelligent logistic yard
- Different **road construction** zone scenarios in city environment
- Different road side **objects**: buildings, trees, parking cars, used road signs, fences, dust-bin etc.
- Changing weather conditions (rain, fog)







# Central Building - Boxes and offices

- 8 double workshops (75 m<sup>2</sup> each) for passanger cars
- 3 lane truck workshops with 26 m length and service pit (410 m<sup>2</sup>)
- 20 offices (~25 m<sup>2</sup> each) with 6 people capacity each
- Meeting room with capacity for 30 people
- Storage room
- Complete separation from central building







Project Phase 1 2017



# Workshops and offices

At area with special separation (confidentiality!)







## Central Building - Reception

- 2 attractive conference rooms (max. 300 person)
- Unique, high quality design outside and inside for customer presentations
- Flexible room structures
- Complete separation from development area
- Cantine







Project Phase 1 2017



# Testing of electric vehicles

## Special features:

- Charging systems
- Powertrain
- Vehicle control
- Telemetry and monitoring

















